Correction du devoir surveillé n°8

Paradoxe de Penney (1969)

On considère une suite infinie de lancers d'une pièce équilibrée, c'est-à-dire pour laquelle, à chaque lancer, les apparitions de « pile » et de « face » sont équiprobables. Les lancers sont effectués de manière indépendante.

Pour tout entier naturel non nul n, on désigne par P_n l'évènement « pile apparaît au lancer de rang n » et par F_n l'évènement « face apparaît au lancer de rang n ». Pour tout entier n supérieur à 3, on note :

$$B_n = P_{n-2} \cap P_{n-1} \cap F_n$$
, et $U_n = \bigcup_{i=3}^n B_i$.

On définit aussi, pour tout entier n supérieur à 3, $u_n = P(U_n)$.

- 1. Pour $n \in [3, +\infty[$, B_n est l'évènement « la configuration « pile, pile, face » apparaît à l'issue du n-ième lancer » et U_n est l'évènement « la configuration « pile, pile, face » est apparue avant le lancer de rang n+1 ».
- 2. On a, pour tout $n \in [3, +\infty[$, $U_n \subset U_{n+1}$ d'où $u_n \leq u_{n+1}$ par croissance de P. La suite (u_n) est croissante et majorée par 1. D'après le théorème de la limite monotone, (u_n) converge vers $\ell \in [0, 1]$.
- 3. Soit $n \in [3, +\infty[$. Par indépendance des lancers, $P(B_n) = P(P_{n-2} \cap P_{n-1} \cap F_n) = P(P_{n-2})P(P_{n-1})P(F_n) = \frac{1}{8}$.
- 4. Soit $n \in [3, +\infty[$, $B_n \cap B_{n+1} \subset F_n \cap P_n = \emptyset ; B_n \cap B_{n+2} \subset F_n \cap P_n = \emptyset \text{ et } B_{n+1} \cap B_{n+2} \subset F_{n+1} \cap P_{n+1} = \emptyset ;$ donc les évènements B_n , B_{n+1} et B_{n+2} sont deux à deux incompatibles contrairement à B_n et B_{n+3} car par indépendance des lancers, $P(B_n \cap B_{n+3}) = \frac{1}{64}$ d'où $B_n \cap B_{n+3} \neq \emptyset$.
- 5. On a directement $u_3 = P(B_3) = \frac{1}{8}$ puis par incompatibilité deux à deux, $u_4 = P(B_3 \cup B_4) = P(B_3) + P(B_4) = \frac{1}{4}$ et $u_5 = P(B_3 \cup B_4 \cup B_5) = P(B_3) + P(B_4) + P(B_5) = \frac{3}{8}$.
- 6. Soit $n \in [5, +\infty]$.
 - (a) On a $U_n \cap B_{n+1} = (U_{n-2} \cup B_{n-1} \cup B_n) \cap B_{n+1} = (U_{n-2} \cap B_{n+1}) \cup (B_{n-1} \cap B_{n+1}) \cup (B_n \cap B_{n+1}) = U_{n-2} \cap B_{n+1}$, la dernière égalité découle de l'incompatibilité de B_{n+1} avec B_{n-1} et B_n . De plus, par indépendance des lancers et donc de U_{n-2} et B_{n+1} , on obtient $P(U_n \cap B_{n+1}) = P(U_{n-2} \cap B_{n+1}) = P(U_{n-2})P(B_{n+1}) = \frac{1}{8}u_{n-2}$.
 - (b) $U_{n+1} = U_n \cup B_{n+1}$ d'où $P(U_{n+1}) = P(U_n) + P(B_{n+1}) P(U_n \cap B_{n+1})$ i.e. $u_{n+1} = u_n + \frac{1}{8}(1 u_{n-2})$.
 - (c) Par passage à la limite dans l'égalité précédente, on obtient $\ell = \ell + \frac{1}{8}(1-\ell)$ i.e. l=1. On peut toujours trouver un nombre de tirage de sorte que la probabilité que la configuration « pile, pile, face » soit apparue soit aussi proche de 1 que l'on souhaite.

Deux joueurs J et J' s'affrontent maintenant dans un jeu utilisant la même expérience aléatoire que précédemment avec les règles suivantes :

- \star le joueur J est gagnant si la configuration « pile, pile, face » apparaît dans la suite des résultats des lancers, avant que la configuration « face, pile, pile » n'apparaisse;
- \star le joueur J' est gagnant si la configuration « face, pile, pile » apparaît dans la suite des résultats des lancers, avant que la configuration « pile, pile, face » n'apparaisse;

On se propose de démontrer que, dans ce jeu, le joueur J' possède un net avantage sur le joueur J.

- 7. Pour tout entier n supérieur à 3, on note G_n l'évènement « le joueur J est déclaré gagnant à l'issue du lancer de rang n » et g_n la probabilité de G_n .
 - (a) On a $G_3 = B_3$ et $G_4 = P_1 \cap P_2 \cap P_3 \cap F_4$ d'où $g_3 = P(G_3) = \frac{1}{8}$ et $g_4 = P(G_4) = \frac{1}{16}$. Plus généralement, pour $n \in [3, +\infty[$, on remarque que $G_n = P_1 \cap P_2 \cap \dots P_{n-1} \cap F_n$ d'où, par indépendance, $g_n = \left(\frac{1}{2}\right)^n$.
 - (b) Notons H_n l'évènement « le joueur J est déclaré gagnant avant le lancer de rang n+1 ». On a $H_n = \bigcup_{i=3}^n G_i$. Ainsi

$$h_n = P(H_n) = \sum_{i=3}^n P(G_i) = \sum_{i=3}^n g_i = \sum_{i=3}^n \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^3 \frac{1 - \left(\frac{1}{2}\right)^{n-2}}{1 - \frac{1}{2}} = \frac{1}{4} - \left(\frac{1}{2}\right)^n.$$

(c) On a $\lim_{n\to+\infty} h_n = \frac{1}{4}$. Sur une infinité de lancer, le joueur J est déclaré gagnant avec une probabilité de $\frac{1}{4}$ et le joueur J' est déclaré gagnant avec une probabilité de $\frac{3}{4}$. Le joueur J' a trois fois plus de chances de gagner.

8. La dernière valeur prise dans la procédure par la variable k est le rang au bout du quel le joueur gagne. On complète donc le code :

```
1 def Quigagne():
      x = 0
      y = 0
k = 0
3
       while x < 3 and y < 3:
6
           k = k + 1
           r = randint(0,1)
           if r == 1:
9
               if x >= 1:
                   x = 2
                   x = 1
13
               if y >= 1:
14
                   y = y + 1
           else:
               if x == 2:
16
17
                   x = 3
               else:
18
19
                   x = 0
                   y = 1
20
21
       if x == 3:
          print("Le joueur J gagne au bout de '+str(k)+' etapes")
23
       else:
24
           print("Le joueur J\' gagne au bout de '+str(k)+' etapes")
```

r	k	\boldsymbol{x}	$\mid y \mid$
1	1	1	0
1	2	2	0
1	3	2	0
1	4	2	0
0	5	3	0

r	k	x	y
1	1	1	0
0	2	0	1
1	3	1	2
0	$\begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \end{array}$	0	1
0	5	0	1
0	6	0	1
1	7	1	$\begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$
1	8	2	3

r	k	\boldsymbol{x}	y
0	1	0	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
1	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1	2
0	3	0	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
1	4	1	2
0	5 6	0	1
1	6	1	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
1	7	2	3

/3

L'ordinateur afficherait donc respectivement pour les trois exemples : "Le joueur J gagne au bout de 5 etapes"; "Le joueur J' gagne au bout de 8 etapes" et "Le joueur J' gagne au bout de 7 etapes".